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Abstract. The effects of competing quadrupolar- and spin-glass orderings are investigated on a
spin-1 Ising model with infinite-range randomp-spin interactions. The model is studied through
the replica approach and a phase diagram is obtained in the limitp → ∞. The phase diagram,
obtained within replica-symmetry breaking, exhibits a very unusual feature in magnetic models:
three first-order transition lines meeting at a common triple point, where all phases of the model
coexist.

The mean-field theory of Ising spin glasses is quite well understood at present [1, 2]. Since
the pioneering solution of Parisi [3] for the infinite-range interaction Ising spin glass, the so-
called Sherrington–Kirkpatrick (SK) model [4], a wide variety of spin-glass systems has been
investigated within the replica approach [1, 2]. In particular, this method was used to solve a
generalization of the SK model with the inclusion ofp-spin interactions [5], and it was found
that thep→∞ limit leads to the solution of the random-energy model, introduced earlier and
solved by quite different methods [6]. Since then, many otherp-spin interaction models have
been studied, motivated by the fact that they are tractable within mean-field theory, for arbitrary
values ofp, thus rendering it possible to analyse bothp→ 2 andp→∞ limits [7]. Another
fundamental aspect of such models is their striking connection to real structural glasses [8].
Also, it is usually feasible to study the dynamical properties of those models, making it possible
to gain some insights in to the important ageing phenomena presented by random systems [8,9].

An important class of random systems, with many physical realizations, is that of
orientational glasses [10,11]. These systems are usually described in terms of an assembly of
discrete spin variables with quadrupolar random interactions. Recently, ap-spin interaction
orientational glass model was investigated by the replica method [12], and it was shown that
Parisi’s replica-symmetry-breaking (RSB) scheme could be applied successfully: indeed, it
was found that, in the limitp →∞, the low-temperature behaviour of such a model may be
properly described through a single-step RSB approach. This conclusion was shown to be true
for another class of models which describe multipolar glasses [13].

Despite all the above-mentioned efforts, much less has been studied on magnetic models
where different kinds of disorder are present. This represents a very common situation in
physical systems, opening a wide variety of new problems to be investigated. For spin-1 Ising
variables, a simple model including pairwise dipolar and quadrupolar random interactions led to
interesting behaviour, with a competition between quadrupolar- and spin-glass orderings [14].

0305-4470/00/101987+06$30.00 © 2000 IOP Publishing Ltd 1987



1988 J M de Aráujo et al

In this paper we investigate a spin-1 Ising model including both dipolar and quadrupolar
randomp-spin interactions. We consider an infinite-ranged interacting system, consisting of
N spins described through the Hamiltonian,

H = −
∑

16i1<···<ip6N
Ji1i2...ipSi1Si2 . . . Sip −

∑
16i1<···<ip6N

Ki1i2...ip (Si1Si2 . . . Sip )
2 (1)

where each spin variable can assume the values 0,±1. Both couplings,Ji1...ip andKi1...ip
are quenched, independent and identically distributed random Gaussian variables, with zero
means and variancesJ 2p!/(2Np−1) andK2p!/(2Np−1), respectively.

It should be mentioned that a spin-1 Ising spin-glass model withp-spin interactions, under
a single-ion anisotropy fieldDwas already studied by Mottishaw [15]; such a model is identical
to the present one only forD = K = 0. Futhermore, the resulting phase diagrams of these two
models share some common features, e.g., they both present three distincts phases. However,
whereas Mottishaw’s model exhibits one first-order and two continuous critical frontiers, we
show that the phase diagram of the present model displays no continuous transition lines, being
characterized by three first-order critical frontiers, which meet at a triple point.

Applying the replica method [1,2] for the model defined through (1) and following standard
procedures, we get the free-energy density

−βf = lim
n→0

1

n
Gn(qab, λab,Qab, γab, Ra, ξa) (2)

where

Gn(qab, λab,Qab, γab, Ra, ξa) = β2

4

∑
a 6=b
(J 2q

p

ab +K2Q
p

ab) +
β2(J 2 +K2)

4

∑
a

Rpa

− 1
2

∑
a 6=b
(λabqab + γabQab)−

∑
a

ξaRa

+ ln Tr exp

[
1
2

∑
a 6=b
(λabS

aSb + γab(S
aSb)2) +

∑
a

Ra(S
a)2
]

(3)

with β = (kBT )
−1, anda, b = 1 . . . n denoting replica indices. The quantities(λab, γab, ξa)

represent Lagrange multipliers, allowing us to fix the set of order parameters(qab,Qab, Ra). By
demandingGn to be stationary with respect to each of those parameters, we get the equilibrium
conditions

qab = 〈SaSb〉 Qab = 〈(SaSb)2〉 Ra = 〈(Sa)2〉
λab = pβ2J 2

2
q
p−1
ab γab = pβ2K2

2
Q
p−1
ab ξa = pβ2(J 2 +K2)

4
Rp−1
a .

(4)

Throughout most of this paper, we will be interested in the limitp→∞. This is justified
by the fact thatp-interaction models usually exhibit the same qualitative behaviour for finite
values ofp (p > 2). Besides that, finite values ofp require a substantial amount of numerical
work, whereas in the limitp→∞most of the calculations may be carried analytically, based
on the fact that the energies of distinct configurations are uncorrelated [5,6,15].

As a preliminary approach to the problem, let us consider the replica-symmetric (RS)
solution, i.e.,qab = q, Qab = Q, Ra = R λab = λ, γab = γ , ξa = ξ , in terms of which the
equilibrium equations become

λ = pβ2J 2

2
qp−1 γ = pβ2K2

2
Qp−1 ξ = pβ2(J 2 +K2)

4
Rp−1 (5)

with

q = 〈ϕ2
1〉xy Q = 〈ϕ2

2〉xy R = 〈ϕ2〉xy. (6)
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In the equations above,〈(. . .)〉xy stand for
∫ ∫ +∞
−∞

dx dy
2π exp(− x2+y2

2 )(. . .), and

ϕ1 = 2eδ sinh(
√
λx)

Z
ϕ2 = 2eδ cosh(

√
λx)

Z
(7)

where

δ = −λ + γ

2
+ ξ +

√
λy Z = 1 + 2eδ cosh(

√
λx). (8)

One may easily see that the order parametersQ andR never vanish and that (5) and (6) always
present a trivial solution withq = λ = 0, for arbitrary values ofp; herein we identify such a
solution with a quadrupolar-glass (QG) phase [14].

In the limit p → ∞ the QG solution represents the only acceptable solution associated
with the parameterq, since any solution withq 6= 0 is unstable, similarly to what happens in
the corresponding spin-1

2 model [7]; however, there are two simple solutions for the parameters
Q andR, as we describe below. The first one is given byγ = ξ = 0, andQ = R2 = 4

9, in
which case the free-energy density becomes

f = −kBT ln 3 (9)

corresponding to an entropy per spins = kB ln 3; we shall refer to the phase described by
such a solution as a quadrupolar-glass 1 (QG1). A second solution can easily be found with
Q = R = 1, 2γ = β2K2p, and 4ξ = β2(J 2 +K2)p, in such a way as to yield a free-energy
density,

f = − J 2

4kBT
− kBT ln 2. (10)

This solution, which we call quadrupolar-glass 2 (QG2), presents an entropy per spin which
becomes negative forkBT/J < kBTc/J = 1

2
√

ln 2
= 0.6005. . . . ForT > Tc, both solutions

are stable, the former one (QG1) presenting a lower free-energy at high temperatures. As
the temperature is lowered, we find a first-order transition line, where the free-energies of
those solutions coincide; this line is independent ofK and is given bykBT1/J = 1

2
√

ln(3/2)
=

0.7852. . . . It is important to mention that we have also found other solutions, all of them
being completely unstable. Therefore, in the limitp→∞ the RS solution leads to the phase
diagram exhibited in figure 1, with two QG phases, QG1 (q = 0,Q = 4

9, R = 2
3) and QG2

(q = 0,Q = R = 1), separated by a first-order transition line.
Since the RS Ansatz leads to a QG2 solution which becomes unstable at low temperatures,

one must carry on with a RSB procedure. In analogy with the spin-1
2 corresponding

problem [5, 7] and otherp-interaction orientational glasses [12, 13], one may see that it is
sufficient to consider a single-step Parisi RSB scheme for the present problem. This is achieved
by grouping then replicas inton/m blocks ofm replicas each. Order parameters with replica
indicesa, b in the same block take on certain values (qab = q1,Qab = Q1,λab = λ1,γab = γ1),
distinguished from those with replica indices in different blocks (qab = q0, Qab = Q0,
λab = λ0, γab = γ0), whereas the single-replica-index parameters are considered in the RS
approximation (Ra = R, ξa = ξ ). As usual [3], in the limitn→ 0 the parameterm becomes
a continuous variable in the interval [0, 1]. For an arbitrary value ofp, the free-energy density
becomes

βf = − (βJ )
2

4
[(m− 1)qp1 −mqp0 ] − (βK)

2

4
[(m− 1)Qp

1 −mQp

0 ] − β
2(J 2 +K2)

4
Rp

+1
2[(m− 1)(λ1q1 + γ1Q1)−m(λ0q0 + γ0Q0)] + ξR

+
1

m

∫ ∞
−∞

∫ ∞
−∞

dx0 dx1

2π
exp

(
−x

2
0 + x2

1

2

)
lnZ(x0, x1) (11)
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Figure 1. The phase diagram within the RS approximation.
The QG phases, QG1 and QG2 (defined in the text), are
separated by a first-order transition line. Throughout the
grey region the solution QG2 becomes unstable, presenting
a negative entropy.

where

Z(x0, x1) = 1

m

∫ ∞
−∞

∫ ∞
−∞

dy0 dy1

2π
exp

(
−y

2
0 + y2

1

2

)
[Tr(eB)]m (12)

and

B =
(√
λ0x0 +

√
λ1− λ0y0

)
S +

(√
γ0x1 +

√
γ1− γ0y1 + ξ − λ1

2
− γ1

2

)
S2. (13)

From the above free-energy density functional we can obtain several solutions, including those
already described within the RS approximation. From now on, we will restrict ourselves to
the limitp→∞. Our analysis indicates that there is only one new solution within a one-step
RSB that is physically acceptable, i.e.q0,Q0 < 1, q1 = Q1 = R = 1. This solution presents
a a free-energy density independent ofT , given by

f = −
√
(J 2 +K2) ln 2 (14)

with a zero entropy. It corresponds to the low-temperature phase, where all spin variables are
frozen completely at random, each of them in one of the statesSi = ±1, like in a spin-12 Ising
spin glass. Such a solution will be associated with the quadrupolar-spin-glass (QSG) phase.

Since we have obtained three phases (QG1, QG2 and QSG) and their respective free
energies, we can draw the phase diagram of the model within the RSB approach (see figure 2).
We adopt the standard thermodynamic criteria, i.e. whenever two or more solutions are stable,
the correct phase is defined as the one with the lowest free energy. Besides the first-order
transition line separating phases QG1 and QG2 (which remains a line independent ofK

at kBT1/J = 0.7852. . .), we find two new first-order transition lines: one represents the
coexistence of phases QG2 and QSG and is given by

kBT2 =
√
J 2 +K2 +K

2
√

ln 2
(15)
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Figure 2. The phase diagram within Parisi’s RSB
procedure. All phase boundaries are first-order transition
lines. At the triple point (black dot) the three phases coexist.

whereas the other one corresponds to a coexistence of phases QG1 and QSG,

kBT3 =
√
(J 2 +K2) ln 2

ln 3
. (16)

The three phases coexist at a triple point, whose coordinates are given by

kBTt/J = 1

2
√

ln(3/2)
= 0.7852. . . Kt/J = 2 ln 2− ln 3

2
√

ln 2 ln(3/2)
= 0.2713. . . (17)

where all three lines merge together, in accordance with the famous Gibbs phase rule [16].
In conclusion, we have solved a disordered spin-1 Ising model withp-spin interactions

through the replica method. Considering the limitp → ∞, we have verified that the Parisi
Ansatz is suitable to determine correctly a phase diagram with genuine first-order transitions,
each of them accompanied by a latent heat and exhibiting discontinuities on the respective
order parameters. Each phase is described by the solution which is a global minimum of the
free energy. A very uncommon feature in magnetic models has been detected, i.e. a triple point
where all three phases coexist. An important aspect to be explored is the dynamics of this
model, mainly along the first-order transition lines; this issue is currently being investigated.
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